Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs.
نویسندگان
چکیده
Overlapping sense/antisense RNAs transcribed in opposite directions from the same genomic locus are common in vertebrates. The impact of antisense transcription on gene regulation and cell biology is largely unknown. We show that sense/antisense RNAs of an evolutionarily conserved phosphate transporter gene (Slc34a2a) are coexpressed in a short time window during embryonic development of zebrafish at 48 hours postfertilization (hpf). To address the mechanism by which coexpressed sense/antisense transcripts are processed, we injected sense/antisense RNAs in various combinations into Xenopus oocytes. In the cytoplasm RNAs were stable in whatever combination expressed. In the nucleus coinjected sense/antisense transcripts were degraded into short RNAs of approximately 23 bases within 4 h. A homologous transcript from toad or another isoform (Slc34a2b) from zebrafish failed to trigger processing. In oocytes that were primed with nuclear sense/antisense RNA coinjections, a reporter RNA was rapidly degraded. We produced evidence that the observed processing of complementary transcripts was not restricted to Xenopus oocytes, because Slc34a-related short RNAs were detected in zebrafish embryos by Northern blotting. Signals were observed at stages that showed coexpression of sense/antisense transcripts. Remarkably, strand-specific probes revealed that the orientation of short RNAs was developmentally regulated. In addition, RNA from zebrafish embryos 48 hpf was able to induce degradation of reporter constructs in Xenopus oocytes. Our findings may give important clues to understanding the physiological role of the widespread antisense transcription.
منابع مشابه
Natural antisense transcripts: sound or silence?
Antisense RNA was a rather uncommon term in a physiology environment until short interfering RNAs emerged as the tool of choice to knock down the expression of specific genes. As a consequence, the concept of RNA having regulatory potential became widely accepted. Yet, there is more to come. Computational studies suggest that between 15 and 25% of mammalian genes overlap, giving rise to pairs o...
متن کاملNaturally occurring antisense: transcriptional leakage or real overlap?
Naturally occurring antisense transcription is associated with the regulation of gene expression through a variety of biological mechanisms. Several recent genome-wide studies reported the identification of potential antisense transcripts for thousands of mammalian genes, many of them resulting from alternatively polyadenylated transcripts or heterogeneous transcription start sites. However, it...
متن کاملGenome-wide antisense transcription drives mRNA processing in bacteria.
RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aure...
متن کاملTransformation of Rapeseed (Brassica napus L.) Plants with Sense and Antisense Constructs of the Fatty Acid Elongase Gene
The biosynthetic pathways of saturated and unsaturated fatty acids consist of many steps controlled by various enzymes. One of the methods for improving oil quality is to change the fatty acid profile through genetic manipulation which requires isolation and characterization of the genes and other cis-acting elements, such as the promoter, involved in fatty acid biosynthesis. b-ketoacyl-CoA syn...
متن کاملWRAP53 Polymorphism, rs2287498: A Case Study in Northwest of Iran?
Background: Non-coding RNAs apply regulations on expression or function of a gene. A class of non-coding RNAs, natural antisense transcripts, might overlap with their flanking genes and emerge a new complexity upon regulation. WRAP53, is a natural antisense transcript overlapped in a head-to-head manner on the opposite strand of TP53. It has 3 transcripts of which WRAP53β produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2008